Welcome to my world, my world of turbos, tyre smoke, and tuning...
Tuning cars, driving cars, testing parts, and complaining about everything. It's my job, and a the majority of my non-work life too...
|
|
While it's popularity and media coverage is increasing in recent years (Yet it was on prime time TV on in the 70s and 80s- A long way to go before it's back at this level!), Rallycross is, in my eyes anyhow, the most under-rated motorsport there is. And more than under-rated, it's genuinely fun to watch, and by far the most relevant to UK tuning fans of any motorsport. Formula One is world famous and has the biggest budget of any motorsport, but is it exciting to watch? Not really. And it's all so secret that any possible relevance to the tuning we all do we either won't know about for decades, or never will. WRC cars in 2017 will be the most powerful than they've been since the GroupB days, but it's still not a great spectator sport, despite being hugely famous and featuring wild cars. BTCC is hugely popular in the UK, and as circuit racing goes, it's pretty badass, but in my eyes it's not even a patch on Rallycross, and strict rules make things quite samey too. I've seen people talk about Rallycross like it's fucking Grasstrack oval racing, in fact I've seen the same people go "If you want to see a real mans sport, check out BTCC". FUCK knows what they've been watching, but it sounds like they've never seen Rallycross in their lives. If you haven't watched any before, go check some out on YouTube or something. 600bhp 700lbft 2ltr flame throwing anti-lagged 4wd turbo cars door to door, sideways everywhere, on a twisty track which is a mix of tarmac and gravel. As the races only last 5 laps (It was usually 2.5 laps in the 80s/90s), so unlike most racing, it doesn't have boring parts where they're trying to save the car, or tyres, or engine- It's flat out from the start to the end. Anyhow, as I love tuning (and presumably if you like Stav-Tech you love tuning too), the main reason I love Rallycross is the insane acceleration of these things, and that's because the engines are fucking MENTAL... In recent years engines in the top class are restricted to 2ltr (turbo, of course!) and with a 45mm inlet restrictor, which keeps power back to around 600bhp and 700lbft of torque, though previously there was no restrictor as such, but instead different minimum weight classes depending on engine capacity. Things did vary country to country, year to year, but for example, in the late 80s early 90s in the UK, the 4ltr class, which mostly consisted of 2.3ltr turbo engine cars (turbo or supercharged meant a multiplication factor of 1.7, and 2.3x1.7 is a touch under 4ltr), had a 1100kg minimum weight limit. Cars in this class were things like Will Gollop's Metro 6R4 which was the V6 de-stroked to 2.3ltr then twin turbos added, giving it 750-800bhp, and other similar crazyness, such as the 4wd Turbo E30 BMW M3 of Arild Martinsten which also had 750bhp+ Due to the various weight vs capacity classes, it was common to see 1.4ltr to 3ltr+ cars all in the same race, and due to the lighter weights and the fact almost everyone had BIG turbos fitted, everything was, just like it is now, fucking mental fast. You'd imagine maybe that everyone would be aiming for the 2.3ltr turbo engine for the maximum power, but this wasn't actually the case, as these were days before seriously effective ALS systems, so power was always a trade-off with lag, and also, when it boils down to it, on a slippery gravel surface with few straights there's not much grip or opportunity to use big power. It was often said that around 550bhp was the maximum usable power, and many ex-GrpB cars either stayed at, or were even de-stroked to around 1.8ltr, which was enough for their 550bhp power goal, but allowed them to be much lighter than the 2.3ltr turbo cars. Having said this, there were some cars with MUCH more power, 750bhp+, but if you watch old Rallycross videos on YouTube it was spectacular but unless they were in the lead it was very little use on the twisting tracks, and usually have about a 2second oppertunity of full power per lap! Here's a few older rallycross engines. I say a few, as despite the wonders of the internet, it's not a time machine, so despite some pics being uploaded from the 80s and early 90s, there are literally NO pics around of some of the greatest, wildest, and most interesting rallycross engines ever made. Gollops twin turbo 6R4 lump? Nope. Martinsetens F1 Turbo M3 lump? Nope. All the countless Group B 205 T16s, Delta S4s, Audis, etc made better than ever that ran in Rallycross? Nope. Unfortunately there's very few pics out there on internet land, which really annoys me, but here's a few... In the 80s Renault Gordini turbo engines (Which are, in essence, the Renault 5 GT Turbo engines, but with a better, crossflow, cylinder head), from 1.4 to 1.6ltr were popular and used in both Renault and Volvo rallycross cars, often pushing well over 350bhp, and as they were fitted to cars that weighed well under 900kg, it's fair to say they went like hell. Another mega successful and popular engine in the 80s and even 90s were turbo'd versions of Ford BDA lumps, often built by Zakspeed, from 1700cc upwards, and pushing out well in excess of 500bhp. Beetles were popular in 80s rallycross too, with all kinds of specs, including 4wd turbo versions, like this one that's still around to this day... Most interesting about this one is the engine, which is still a VW block, but as Rallycross rules allow any heads to be fitted, it's got Subaru heads... One thing I'd like to know, and I've yet to see pics or info confirming it, is turbo position on this Beetle. Going by what I can see, I'd say it's mounted inside the car, where the rear seats would normally be, which is pretty cool. In fact I 'think' you can just about see it through the hole in the bulkhead on this pic... Rallycross gave a new lease of life for the Group B cars after they were banned from rallying too, showing what they could have been like with more development, making them wilder than they ever were in rallying. Check out this Citroen BX4TC. They were rubbish in GrpB due to lack of development, a total disaster, but in rallycross it got it's chance to be as mad as it should've been, and they were fucking weapons... If you're wondering how batshit crazy fast these cars were, even in the mid 80s, check out this article from 1984. No it's not in English, but enough of it is written in words we understand to get the rough idea of the 1984 spec of Rallycross legend Matti Alamaki's Porsche rallycross car... So this is 1984, and this Porsche 930 has 4 wheel drive, a twin turbo 3.2ltr flat six pushing out 750bhp and 6200rpm, and weighs, well, 1130kg I think? Check out the old-skool timing gear wheel on the back in the main pic too! Now page two... 0-62mph in 3.1sec (so 3sec dead to 60mph), 0-100mph (160kmh) in 5.7sec, and 10.5sec quarter mile time. And this is 1984, 32 bloody years ago! EDIT!!! You might think the above acceleration sounds mad, and it is, but according to one of our helpful Finnish readers (who can read the above words, unlike me lol), those times were not only done in the WET, but the cars stop speed is 206kmh and hit it by just 260m, so did the last 140m just bouncing off the rev limiter in top, no more acceleration! So if it had the gearing for it, and a dry surface, that car is easily in the 2s to 60mph, 4s to 100mph, and running 9second quarter miles. In 1984, and not remotely a straight line drag car. Crazy shit right there. Rallycross is also where you see the engines that, while we all NOW know are massively tunable, have often been tuned to 600bhp+ for decades already. But as most people don't notice race engines, and just look at tuner cars for inspiration, people never realise. Like Saab lumps... Or the Opel/Vauxhall C20XE... Peugeot/Citroen XU... Rallycross is amazingly unknown by tuning fans in the UK, and to me I find that fucking bizarre, as frankly, the engines are THE most relatable to the shit they do of any motorsport; just usually way, way better. I mean, look at all these engines so far, they are ALL stuff you'd recognise from typical big power tuned engines we love to see in road/drift/timeattack cars, but frankly, these are usually done far far better, and cleverer, by people who know what they're doing rather than just pretend to. Not many parts on Rallycross engines are bits you recognize as the big money off the shelf tuner parts everyone likes to fit to their road cars though, as funnily enough, despite the hype, those bits are rarely, if ever, the best designs. That to me is a big reason why I love Rallycross- The engines are something I know, understand, relate to, agree with the design, and more to the point, they're my inspiration when tuning- Not some nobhead with a lockup who calls himself a tuner. THESE are the engines you should look up to in my eyes, not some shiny shit you see on FB, but more on this later... ANYHOW, moving on to the '00s to present day, Rallycross top classes around the world mostly changed to a 2ltr turbo class with an inlet restrictor (This was in 1997 if I remember right in Europe, and maybe 2003 in the UK?) to hold back power to vaguely sensible levels as things were getting ridiculous (and frankly, with today's tech, a 2.3 non-restricted turbo engine like the old days, would now have about 1200bhp, and costs would be fucking insane), though this 'vaguely sensible' level is still about 600bhp and 700lbft, which frankly is insane fast, like '0-60 in sub 2sec on tarmac' sort of fast. This is the usual 45mm turbo inlet restrictor fitted... Though at least once a twin turbo setup was attempted, which meant two smaller restrictors instead... One other big advantage the newer (and by that I mean in the last 15yr or so) engines have, despite less power than some of 80s ones, is fucking everything has something very noticeable fitted, usually a setup made Swedish company Tibuc... What the above is, well, the 2 blue hoses coming from the box on top of the plenum to the box after the throttles, is the electronic adjustable air bypass valve, a fucking big air bypass too, for the anti-lag system. And ALS is, if you speak to most Rallycross drivers these days, is THE most important part of the engine. The engine performance difference ALS makes is an incredibly hard thing to imagine unless you've experienced a really seriously good working system yourself, but the difference between it being on and off is like two different engines, and the difference between being competitive and not in Rallycross. Realistically, the 2ltr turbo engines of current cars, without ALS activated, are going to have a powerband of 4000rpm+ and not the most responsive things when on and off throttle either, as the turbos fitted are BIG. A small high rpm powerband and poor throttle response is NOT ideal for Rallycross, which is incredibly close and tight, on and off throttle constantly, and where a whole lot of the cars steering done with the gas pedal rather than the steering wheel. Basically, if you switch the ALS off on a Rallycross car they will get left for dead by the other cars with it active; you just can't compete without it. With ALS on (and Rallycross ALS is mental, like full boost all the time regardless of revs and throttle position style, proper fucking mental), the cars are totally different animals, like driving an 12ltr+ naturally aspirated engine that somehow also revs really high, rather than a typical 2ltr big turbo engine- Basically you get BIG torque and instant response constantly, regardless of revs. Some more pics, all with Tibuc ALS setups, as almost everything had/has it... As the above pics might hint, Cossie YB engines dominated Rallycross from the late 90s until recent years, as despite what the Jap fanboys etc like to think, if you wanted a 2ltr engine that could bash out 600bhp/700lbft and win you races, the YB was the one to have. How many SR20s have you seen in Rallycross? I can think of one tbf, in Finland, in a Mazda RX7.. But again, variety has always been key, I mean, here's a Mitsubishi 4G63... And here's a VW lump... Going bang up to date now to the present day, while the engines are the same principle, some of the ALS systems are even more advanced, more like mega power versions of current WRC engines, and now the airflow bypass isn't just past the throttles (though it usually is too, via fly-by-wire throttles now though more often than not), but it's direct in to the exhaust manifold via a valve and a series of pipes, which is more efficient. This particular ALS system isn't actually new though, the earliest versions of this were used on the Audi Group B rally car in the mid 80s. This ALS system is the valve at the front by the exhaust manifold on the below pics, and the small bore pipes from it is feeding air to each exhaust runner. Anyhow, regardless of age, the fundamentals of turbo Rallycross engines hasn't changed in 30odd years, and they're still fucking awesome and even the oldest ones should be the inspiration to most of us tuning turbo cars in my eyes.
I'm not saying copy them exactly, as I dunno about you but I sure as shit can't afford to build a 700bhp/700lbft 4cyl turbo crazy thing, but what I mean is check them out, check out what they do and often DON'T do, as you can be sure as shit they do or don't do it as they know what's best. Not sure what I mean? Well... For example, people often get all giddy and excited telling the world about their amazing boost pipe clamps that cost them about 50quid each, and those same people tell the world jubilee clips are shit and don't hold under high boost, etc etc, usually despite the person saying this having a car that don't even run a lot of boost. WELL, let's look at some Rallycross engines shall we? Money is NOT an issue for them, they are mega spec, the best of the best. The engines often run 3bar+ peak boost. But what holds the vast majority of their hoses on, from the early 80s to the present day? Yep, that's right, normal Jubilee clips. YES, shit twisty soft Chinese shit fake Jubilees are junk, but proper ones are strong as hell, can be done up mental tight, and hold a fuck sight better than most the wide Mikalor etc etc ones people like to shout about loudly on the internet. What about massive fuckoff inlet plenums like so many people pay big bucks for on their tuned road cars with barely 200bhp per litre? Well, these Rallycross cars are 300bhp/litre+ and do they have massive plenums? Fuck no, as there's nothing good to gain from it at all, and plenty to lose in response. A better than standard plenum? Yes. But IMO 80%+ of aftermarket plenums are just some badly designed, often oversized, shiney shit that does no good barring lighten your wallet. I've mentioned it in the past, but what about big cone filters in the engine bay? If you listen to internet car experts, they suck in hot air and kill ruin performance, seemingly oblivious to the fact ENOUGH air matters 100 times more than COLD air. Thankfully Rallycross people aren't keyboard tuners, and as the pics show, they put a massive air filter where ever it fits best. Oh, here's a good one you can see in these pics that everyone in the tuned road car world ignores, fucking TURBO HANGERS. On the internet you can't fail to read people constantly crying as their turbo manifold has cracked, or the bolts have worked loose, for the 20th time this month. What gets me is peoples solutions, or advice, are all kinds of crap, such as fancy bolts and fasteners, different exhaust designs, even fucking welding the turbo straight to the manifold like they're auditioning for fucking Roadkill or something. But despite all this, never do they have the sense to look at pretty much ANY proper race car and notice they fucking ALL run turbo hangers, taking the weight of that bloody turbo off the exhaust manifold, off the exhaust system, off the exhaust nuts, and bolts, and studs, and gaskets, and everything else that fucking breaks. And lo and behold this stops them breaking. Dunno if I ever mentioned it before on here, but on my old Cossie (they have a form of turbo hanger fitted as standard, nothing fancy, but they have them) I ran 2 years no issue at all without anything blowing, leaking, cracking, anything, despite 30psi boost, anti-lag, and serious abuse. THEN my turbo hanger got a bit tired looking so I removed it to sort it out, presuming it'd be fine without it for a bit (this was like 2002, I knew no better), and within a WEEK it was blowing at a join due to loose bolts, and from then on it would loosen bolts or blow an exhaust gasket within a few days of doing them back up. Refitted the hanger a week later and it never happened again. That taught me a lesson for sure, but despite telling people for about 15 years since that their issues would be solved with a turbo hanger, does anyone listen? Do they fuck, you still never see 'em. And the above are just a few examples of the many many many things just checking out some proper race car engines, and ignoring typical shitty tuner cars, will teach you. And ignoring teaching you anything, go watch some fucking Rallycross, it's mental! There's tons of 80s, 90s, and current Rallycross all over Youtube, and in fact, if you wanna see the craziness of modern ALS on Rallycross cars, find some vids of the Gymkhana Grid Championship finals in Greece from last weekend (ie end of October), there was various Rallycross cars in that, most notably Liam Doran's Citroen. The finals was at night, so it's flames galore, and by the end of a 1min run the entire exhaust, right to both tailpipes, was glowing red hot- Properly amazing looking. So yeah, Rallycross is awesome, and Rallycross engines are surprisingly educational AND awesome. Check them out... AYRTON SENNA'S FIRST F1 ENGINE- THE HART 415T. TINY ENGINE, TINY BUDGET, BIG TURBO, BIG POWER!10/19/2016
Brian Hart isn't a name many know of these days, but from the 70s to the 90s he was a bit of a legend in the UK tuning world, especially the Ford world, and this feature is about the wildest engine he and his small company produced, the Hart 415T. While Cosworth famously initially produced the legendary Ford BDA engine, what most don't realise is that is was Brian Hart that made is the success it was, producing the 2ltr BDG version that dominated the World Rally Championship (and practically every other rally worldwide) in the 1970s, and it was also him who developed the full crazy Group B rally version of the RS200 BDT engine, the BDT-E. Anyhow, what was known in the Ford Motorsport world as the BDG was initially developed by Brian Hart as a Formula 2 engine, firstly as the 420S, then in full developed, kick ass, practically nothing left of the original BDA (not even the block) version, as the 420R. Hugely powerful for it's size and weight, and there's versions right up to 3ltr that's been made, and still are to this very day. The Hart 420 kicked ass Formula 2 from 1976 on, and it was so good that the Toleman F2 team agreed in 1978 to help finance development, which clearly worked, with the engine taking Toleman to a 1-2 in the 1980 championship. And this is where shiz gets interesting, as for 1981 Toleman decided to step it up a notch, and despite being a small team vs the big manufacturers, they decided to enter Formula One, which by now allowed either three litre naturally aspirated engines (the Cosworth DFV still powered most F1 cars by then, though Alfa and Matra both had versions too- 14 out of the 17 teams used non-turbo engines), or 1.5ltr turbo engines, which Renault, Ferrari, and Toleman chose to use in 1981. As Brian Hart showed his amazing talent for mental 4cyls, it was decided that was going to be the new format for their 1981 F1 1.5ltr Turbo engine. Bear in mind this is a small team, and a small tuner, producing his own engine from scratch, to compete against engines built by some of the biggest companies in the world. A serious David vs Goliath battle, it seems and insane plan, but they did it... The Hart 415T engine looked similar to the 420R, and they were both 4cylinder 16valve engines, but the 415T was another ground up development by Hart, a 1.5ltr purpose built turbo engine that was actually a monobloc, ie the head and block are cast as one piece- No head join = No head gasket to blow! According to an old issue of MotorSport magazine at least, until this engine Hart had never seen a turbo in the flesh, didn't understand intercooling (might explain the chargecooler- reality>theory!), and the original 1981 engines were NOT monobloc either, though how true that is I don't know (Maybe just test engines weren't mono? that'd make more sense, but I've not found that info out). Unfortunately, as with all this old F1 Turbo stuff, most the truth is lost because of both secrets and age... Anyhow, here's some bare engine pics you can click on to check out the construction of this all-alloy monobloc lump. Note no head to block join, 4x throttle bodies, and individual external water ports above and below each exhaust port. The 1981 and 1982 seasons used a single Garrett (I've heard KKK mentioned too, but never confirmed this to be true) turbocharger mounted on top of the engine, and an alloy chargecooler under the inlet manifold to help keep temps down. Here's a 1981 engine, which made a touch under 600bhp in the race, and I think 700odd in qualifying... This is a 1982 engine I'm fairly sure, much the same basic setup, but a nicer manifold, especially for the wastegate take offs. These were also, as per all F1 Turbo engines of the era, a little more powerful than the previous year, as development progressed. Here's a few more early spec 415T pics showing the chargecooler etc, before we get to the big change and where things get really interesting... ANYHOW, the 415T engine so far, while getting a lot of praise for being a pretty amazing and strong engine considering it was developed from scratch by a very small UK firm with an absolutely tiny budget (in Formula 1 terms at least), it was still down on power versus the others, and while it often showed flashes of it's potential, the results so far didn't really materialize. With bigger sponsors and therefore bigger budgets appearing for 1983, the layout changed a little, with the engine looking a bit more conventional; a big intercooler, and the turbo mounted to the side on a long runner tubular manifold. Power was up, and the car overall was better, scoring points in the last 4 GPs of the 1983 season- Finally starting to show what this clearly very strong and capable engine can do. And then came 1984, and the appearance in Formula One for the first time ever, of the now legendary, and then reigning Formula Three champion, Ayrton Senna. Unfortunately things did NOT go well for Senna or his Toleman teammate in the first race of the season in Brazil, as BOTH cars retired with blown turbos, a problem that has always held the team back from the beginning, Senna after just 8 laps, his teammade Cecotto 10 laps later. Senna was pissed off, everyone was pissed off, but they had a solution, and rather than write it myself, here's it straight from one of the team... In yet another fantastic example of "Most famous names sure as fuck don't mean the best stuff", they fucked off the Garrett turbos that had held them back all these years, and went to the Holset turbos that they only really knew about due to their sponsor using them on their trucks. Holset knocked them up some suitable spec turbos in FOUR DAYS (More proof, if you need it, that the BS about 'truck turbos' not being made of the right materials for cars is bollocks- You think they magically fashioned them some stronger custom stuff in 4 days? Not possible. They were 100% off the shelf Holset parts), and lo and behold suddenly Toleman's unreliable turbo days were over. In fact, from what I understand, the one time a turbo did blow (unsure if it was 84 or 85), once inspected it turned out it was because a bit of valve seat (supposedly a weak point on these engines) went through it. These 1984 Holset boosted engines made 800bhp at 4bar boost, pretty insane for a 1.5ltr 4cyl engine, and while only about 50bhp down over the top cars at race boost, they were still around 200bhp down on the top cars at qualifying boost, simply as they didn't have the budget for special grenade-spec qualifying engines like some top teams did. Aside from that though, if it was BHP per £££ spent, they would've been the top by miles. These engines were 6.7:1 compression and revved to 11,000rpm in 1984. The actual Holset turbo used I'm unsure, but looking at pics, especially the compressor side and the compressor back plate, it looks to be a HX50 of some description. Unfortunately, despite the engine finally showing it's full potential in 1984, with 3 podium finishes for Senna, the following season didn't go well. While the engine was no longer an issue, Senna left for Lotus, and as the Toleman team had a habit of pissing off tyre manufacturers, first Goodyear, then Pirelli, meant they could only use Michelin, which massively backfired when Michelin withdrew from F1 after 1984 too, leaving them with no tyres at all for the start 1985. They missed the first three races due to having no tyres, and by the end of 1985 Benetton fully took over the team, which then became the works Renault team, and that was the end of the badass little Hart 415T engine. The last thing worth mentioning is the majority of the modern pics in this feature have been taken at Geoff Page Racing, who is pretty much the god of Group B and Formula 1 turbo engines, and looks after pretty much every legendary car from that era you can think of. I'd love to go there and do a feature on the place, as there a whole crapload I've yet to learn no doubt, but as yet it's never happened. Christ, if I could go back in time (this time armed with a decent camera) to about 2000-2001 when Joe Stevens from Bluesprint built my Cossie engine, I'd be able to show you some amazing F1 Turbo stuff- That place, both the actual workshop and warehouse, was full of BMW/Hart/Zakspeed/etc F1 turbo engines, manifolds, wastegates, all sorts, it was pretty incredible.
Anyhow, that's all I know, I wish I knew more, but it's a pretty amazing story considering how much of a (in F1 terms) shoestring budget they were on! In the UK and Europe, the Ford Pinto was about the most popular Ford engine to tune in the 70s, 80s, and early 90s, and to this day powers loads of fast road and race cars. The Pinto has spawned loads of legendary variations, most famously the YB Cosworth engine, but also things like the Millington Diamond engines you see powering most top Mk1/2 Escort rally cars these days, among other things. The thing is, while the Pinto was cheap and common, let's be honest, it wasn't that great, and didn't exactly set the tuning world on fire. Granted, it can be made to push out decent performance, and the bigger bucks and much rarer YB/Millington/Warrior/etc headed versions can be pretty insane, but for your average Joe road car tuner, once the 80s and 90s came along with various other, better, engine options, it just didn't cut the mustard; especially as there was very little serious turbo development done by tuners or racers on the basic 8 valve production Pinto engines. In the USA though, they didn't get 'our' Pinto, but oddly, and on a similar time scale to our engines (ie early 1970s on), they got a very similar looking, but it turns out totally and utterly un-interchangeable engine, fitted to a car that was called the Ford Pinto. But the engine wasn't called a Pinto, the engine was the Ford Lima. It looks like a Pinto, with it's inline 4cyl 8 valve setup and iron block and head, but the Lima is, aside from de-stroked race engines late small bore versions, 2.3ltr, 0.3ltr more than the biggest production Pinto, which is a bonus for tuning from the outset. In fact it's even more of a bonus than it first seems, as thanks to the engine design, the capacity can be increased hugely with stroker kits, with high revving engines up to 2.9ltr (just under 400bhp N/A!) have been built from the Lima. Standard capacity is one bonus, but another is, like it or not, the Lima block seems to be a lot stronger than the production Pinto block too. Normal Pinto blocks are generally considered a liability above 400bhp (though more has been done, with some risking pushing the 205 block YBs beyond 500...), and beyond that it's generally the stronger (but interchangeable) YB Cosworth (4wd and RS500) blocks that are needed for the Euro Pintos. The Lima block though? Well, 1000bhp+ has been known... Another massive advantage is the Lima attracted a huge tuning and motorsport scene in the USA and South America, so unlike the Pinto, there's a large amount of tuning knowledge and parts out there enabling BIG power; especially with turbocharging them. Perhaps the biggest single advantage though from a road car tuner point of view, is, from 1979 to 1989, it was sold as a factory turbocharged engine on a huge number of vehicles. This means it was not the lucky rich few who got to play with them, but your average Joe had no problem affording one, as they were cheap and relatively commonplace. As always with road car tuning though, there's always the question of "Where IS the limit of this engine?" and without motorsport it's rarely found out. But just like the YB Cosworth engine we all know and love, the turbo Lima was used by the Ford Motorsport teams for their race engines too, which meant a whole shitload of expensive R+D the road tuners could never do was done for them by Ford, advancing the tuning scene massively... In the early-mid 80s XR4TIs in the USA kicked quite a bit of ass in IMSA GTU racing using 2ltr 400bhp versions of these engine, still using the factory iron heads etc etc, but then for the TransAm race series where more many more mods were allowed, the Lima engine went fucking mental... Bashing out 800bhp (allegedly 1000bhp+ wasn't an issue in dyno testing, but of course it needs to last full race distance) from the little 2valve per cyl turbo engine, while still lasting full race distance, these things were mental. Check out the small water lines from the head next to each exhaust port- Cool little mod to prevent steam/heat pockets in the head, which is one of the many reasons big power turbo engines shit out head gaskets and so on... Even Ford themselves considered making the engine even better, funnily enough about the same time Ford Europe turned the Pinto in to the YB Cosworth, by creating a twin cam 16V Turbo version. While prototypes were fitted to a few testbed cars, inc a Mk1 Sierra chassis (the B+W pic below), it never saw full production, which is a shame, as potentially it was a Cossie beater when tuned, considering how good the 8V head version is... Anyhow, after Ford themselves stopped racing it, the tuning scene and indeed the racing scene using these engines went from strength to strength, especially with US Ford 4cyl tuning gods Esslinger Engineering producing countless parts for them, from stroker kits to lightweight, high flow, and strong as hell, alloy heads and blocks. It's not like these 8 valve engines are only good with a ton of boost shoved down them either, as they're hugely popular in naturally aspirated form in midget racing (crazy single seat dirt track go-kart things, not small people with large heads), and often push out 375bhp from 2.6ltr versions revving to around 10,000rpm! In fact Esslinger are so confident in these things, they sell a sealed crate race motor, 2.6ltr, 340bhp, and 9400rpm, that is capable of over 30 races before needing a rebuild- Try that with a Pinto! So yeah, in my eyes at least, as much as the YB Cosworth is one of my, if not my favourite engine ever, it's a real shame Ford USA and Ford Europe didn't work together on engines, as if the Lima existed over here in place of our Pintos (woo, alternate future theories...), our tuning scene, especially the Ford tuning scene, probably would've been even more full of big power cars, and even earlier than it was...
After the huge popularity of the feature I did on the awesome but barely heard of Ferrari twin turbo V6 HERE, I decided to do one about an even more obscure F1 Turbo engine... Alfa Romeo are famous for making oddball stuff, and this engine is no exception, having a turbo setup I've honestly never seen on any other engine before or since, but this engine was never raced, info and pics are scarcer than any other... Alfa already had a F1 Turbo engine in the 80s, a twin turbo 1.5ltr V8 that's very fucking cool and I'll probably do a feature on in the future, but allegedly due to the plans to change the capacity rules down to 1.2ltr in 1988, they designed a new four cylinder engine, which was to be used by Legier (in current spec 1.5ltr form) for the 1987 season. As the pics show, while the engine was a normal inline 4, twin cam, 16 valve engine, using two fuel injectors per cylinder, it was also twin turbo, but in a VERY unique way, which to be fair, I'm still struggling to understand the reasoning for. Twin scroll single turbo setups on 4cyl are very common and VERY effective (25psi+ typically by 3500rpm on a 2ltr with a 600bhp capable turbo), which split the exhaust gas flow from cyls 1+4 in to one scroll of the turbine housing, and 2+3 in to the other. Using twin turbos in a similar way, using cyls 1+4 to one turbo, 2+3 to the other, works in the same way, though rarer as there's little/no real advantage over a single. Look at the piping on this one though, it's not twin scroll or twin turbo as we know it, in fact I'm not 100% what it is to be honest. There's 8 exhaust ports, one per valve, which is rare, but not unheard of even on some production engines (Pug 405 Mi16 for example), but if you look, the ones from cyl 1+4 don't go to one turbo, and the ones from cyl 2+3 don't go to the other, in fact it looks like the front exhaust port runner from each cylinder goes to the front turbo, and the rear exhaust port runner from each cylinder goes to the rear turbo! Exactly what good that would do I can't figure out, in my mind it would do no good at all, as it'd be no different to a single scroll single turbo setup. The engine produced 850bhp at 4bar boost in early testing/development, but was massively slated by the test driver for terrible drivability and reliability, and was canned before ever being raced, so maybe this bizarre turbo setup really was as cool looking but pointless as it seems. Here's a few more pics, about the only ones out there, showing how the intercooler and external wastegate pipework was laid out... There's rumours initial testing used a single turbo and 4 exhaust ports, then twin turbo but still 4 exhaust ports rather than the final version which had eight, but I've never seen proof of this via pics or anything else; it's really about the least documented engine there is, which is a shame, as I'd love to know more...
To finish this off, here's a couple of pics of the test car running the engine, showing the fucking enormous Behr intercoolers these badass F1 Turbo engines of the 80s ran... IF you're going to take influence from something when tuning your own engine, I always say don't just copy other tuned road cars, or even tuners demo cars, as they're usually massively flawed, no matter how quick and expensive- Take influence from race cars. When I mean race cars I don't mean just some random persons race car, I mean world class, best there is, race cars. They've got the best budgets, and the best people, so if they're doing something, and it's not JUST because the rules say so, it's fair to say it's good, and it's strong. The problem is, most modern stuff is shrouded in secrecy, is heavily restricted by rules and regs, or is so out there that it's just not relatable to our own tuned cars. So what do you do? Well I go back in time a bit. While electronics and so on have improved, the basic principles of tuning are still the same as the 80s, and 90s, in fact there's a lot of stuff from the 70s that's fucking genius compared to what we think of 'top' tuned engines these days, 40 odd years later. This is still a big issue, as a lot of old race technology was just as secret back then, so nobody ever knew, and by the time it wasn't such a secret everyone had forgotten about it, so the true details are next to impossible to find on paper, but luckily, we have EYES and the internet has PICTURES, and those my friends, are able to put words in our brains, we call them thoughts and ideas and plans. As any of you who've read my shiz before probably know, I love turbos, and boost, and anti-lag, and frankly anything to do with turbos, and for that reason, despite there being not much legit detail about them, and having zero interest in later N/A ones, I LOVE the Formula One Turbo engines of the late 70s and early 80s. These engines were totally ground breaking, "inventing" and using many turbocharging methods that are even today only ever used in "Groundbreaking" turbocharged cars, well over thirty years later, and many that were used would be slated in a "WTF, that won't work" way by the typical internet bedroom tuners of today if they saw someones project car with it on, despite it being technology twice as old as some of these dickheads are. ANYHOW, because of this, I've decided to do occasional features on certain mental turbo race car engines from back in the day (F1, GroupB, Rallycross, IMSA, and so on), as they are often VERY relevant to today's tuning, the info out there is practically zero, and frankly, they're cool as fuck. What this WILL be though is me explaining what I see via pics etc, as almost none of the stuff I'll talk about is mentioned anywhere on these old F1 pages with engine details etc, which is a shame, as these mental engines are never done any justice due to this- They just talk about power and boost and that's it. The one I'm going to start with certainly isn't the most famous or sucessful, but it's one of the most oddball, coolest, and most changed over the years, the Ferrari twin turbo V6 from the 126 series of F1 cars... Right from the start of it's life in 1981, it was a 1496cc 24V V6, which had a tiny stroke of just 48mm. That's really small as these things were built to REV and make POWER rather than potter around at low rpm- A typical production 1.4-1.6ltr engine tends to have a stroke somewhere between 75 and 90mm. Compression Ratio was LOW, about 6.5:1, despite running the most det-resistant fuels known to man, plus water injection, massive intercoolers, and more, and for a good reason too- to get BIG bhp per litre you need BOOST- These ran, at their peak, over 3bar (~45psi) in race trim (~660bhp), and over 4bar (~60psi) for batshit crazy qualifying 850bhp mode. This is the equivalent of a 2ltr engine pushing out over 1100bhp (qualifying) or 880bhp (race trim), and to lasting not just a couple of hard laps, a quick squirt up the street, or 8seconds up a drag strip, which is enough for most tuned road cars today to crap their pants, but 1.5 to 2 hours fucking flat out pedal to the metal full revs full boost full anti-lag racing. People can argue about this all day long, but you think even with modern ECUs and sensors you'll easily get an engine with that much bhp/litre lasting 2hr flat to the mat at 9.5/10.5/11.5:1? I don't. A lot of mappers can't keep engines together running 1.5bar and 8.5:1... Anyhow, on to the cool shit you can see in pics... First up, as above, at first the thing wasn't even turbocharged! It was "Sort of" supercharged, and what I mean by "Sort of" is it ran a Brown Boveri Comprex Pressure Wave supercharger. Those things are very odd, like a mix between a turbo and a supercharger, but in fact neither. They're rare, and a bit flawed, but very cool. The Wikipedia page about them is HERE. It was only tested like this, in 1981, and never raced, as you know what's better? TURBOS! Despite the big deal about a few modern BMW and Mercedes Vee engines with the exhausts inside the Vee and the inlets on the outside, it's far from new, and this Ferrari engine ran like this, as the pic of a very early version above shows. Twin KKK K26 (Possibly K27 compressor side) turbos, and a single, but fucking massive, external wastegate. Note the pre-turbo throttles, which was a very early way of helping combat turbo lag (put your hand over the vacuum cleaner inlet and listen to the rpm increase, same thing...). Also note the inlet plenum design, which is basic, but done in this cone shape as a way to equalise airflow- The furthest away cylinders get the MOST air in a boosted application, which is another reason all these aftermarket 'high flow' box/blob inlet plenums are shite. Another pic from a fairly early version show the less then sexy, but clearly fine, air filters, but most interestingly, how the wastegate is pushed open- Not by boost pressure like 99% are these days, but by EXHAUST BACKPRESSURE! (follow the pipe from the bottom port of the wastegate to the turbine housing inlet) This is actually VERY clever, as pre-turbine backpressure is key to power and reliability, more so even in my eyes than the pressure everyone knows, boost pressure. As the pic below shows, the wastegate was piped up in the usual twin port way, with a typical vac line going to the top feeding it boost, allowing boost pressure levels to be controlled easier. Also note, below pic is later spec with full EFI. Next up on the "Blimey, how interesting" list, the intercooler inlets and outlets... The pic above in an early engine, but the design stayed the same regardless, simple as it's a good idea, and that's equal flow inlet and outlet designs for the (massive) intercoolers. 99% of intercoolers you see have a 3in (or less) round inlet and outlet pipe, but that isn't making the most of the intercooler at all, in fact a lot of the size is wasted. Having it as above makes sure the airflow is spread right across, massively improving cooling for any given size cooler. (also note, yet another different inlet plenum, but still smaller at the far end). Look at the bottom right of this late spec version of the engine at the inlet plenum design. This is the "Twin Plenum" or "Equal Flow Plenum" style, used by Audi since the Group B days right through to modern LeMans etc cars, and often seen in Rallycross, WRC, and some tuned road cars. A quick google will find you pictures of the internals, but it basically directs air through a long but narrow slot the length of the main plenum, which gives far, far, more equal flow per cylinder than a traditional inlet on a boosted engine. The more equal airflow per cyl, the easier a car is to tune for maximum reliability as well as power, and overall makes for a more efficient engine too. A BIG reason a whole lot of tuned turbo road cars blow up is because the AFR sensor signal they tend to be tuned from is an average from all the cylinders, but some cylinders get a LOT more airflow than others due to the unequal flow, so some run much leaner and much hotter than others, so while the average AFR might be 11.5, some might be 10.5, some might be 13+, so those lean cylinders pop head gaskets and melt pistons... YET AGAIN, the above is something pretty ignored in the tuning world, esp in the UK, and when me and Zurawski Motorsport designed one for my RB20 engine, I got no end of shit, fucking pages and pages of it, from internet tuning experts (ie never built a good car in their life) telling me the design is shit, won't work, restrictive, etc etc, totally oblivious to the fact it'd been used on some of the worlds best engines for the last 30+ years. Lo and behold my engine spooled amazingly well for the turbo size, made fucking mega power for a RB20 of that spec, and most importantly, was stupidly, hugely, det-resistant compared to most- Even 2bar on pump fuel there was no sign of it... Next up, my favourite turbo thing in the whole world, and something rarely ever mentioned until cars of the 1990s, ANTI-LAG! I've never seen any info on it, but the pics clearly show it... The type of anti-lag (ALS) used wasn't the basic throttle bypass ALS used on tuned road cars, most 90s rally cars, and still very popular in rallycross, but the better, albeit more complex version where the air goes directly from compressor outlet to turbine inlet, as per WRC cars and other current high-end turbo racers, the later versions of the legendary Audi Group B car, plus late Celica GT4 rally cars, and later Mitsubishi Evo rally cars. Amazingly, and I'm still not 100% how it was done, but even on early mechanically fuel injected engines (as above) it was used. The above engines aren't the only mechanically injected F1 Turbo engines that ran it (See upcoming features), but from what I've guestimated from the pics, the increased fueling needed when the ALS was operational even with mechanical injection (rather than EFI, where the ECU has control over the injectors) was done via Hobbs switches and other basic sensors. You may be thinking "What the fuck on the above pic hints at anti-lag anyhow?" well, that's the T-piece just after the compressor outlet with the green hose on it that disappears under the air filters. Logically that can only be for 2 things, a dump valve, or the above form of ALS. I was 100% sure they didn't run dump valves, but still, I'd like to see more pics before I was sure it was for the ALS. Luckily, there's this pic... While the mechanics are busy swapping turbos, you can once again see the green pipe, but most importantly, notice one exhaust pipe running forwards, between the compressor housings, to what looks like a clamp, then a valve. That is 101% only one thing, the ALS valve, that lets the fresh air from the compressor outlets in to the exhaust pre-turbine. EDIT- In fact, to double confirm it, I found this pic too last night, fairly clearly showing the ALS valve between the two turbo inlet trumpets... The above picture shows a late spec engine showing a good view of most of what we've talked about. The equal flow inlet plenums, the equal flow intercooler pipework, the anti-lag outlet pipe, and also note, as this is a late spec engine, it's running EFI with 2 injectors per cylinder. Also, look at the temperature sensor stickers, measuring not only compressor outlet temp, but temp at each inlet port, showing not only how good the intercooler is, but will help indicate how equal the flow is too. Intercooler is made by Behr, who are about the best intercooler makers in the world, and made the standard Sierra Cosworth intercoolers too, which are amazingly good for their size too. On a related note, the ECU setups on these were Weber Marelli ones with Bosch injectors, just like Cosworths, Integrales, Ferrari F40s, and many other legendary 80s and 90s turbo cars. Finally for above, can you spot something else different from earlier engines? Yep, late engines seem to have a different head design, with 2 exhaust ports per cylinder, ie one per valve. Some, albeit not many, road car engines have this, such as the 1.9ltr 16V engine found in the Peugeot 405 Mi-16.
Anyhow, that's about it for this time. Hope it's not just me that finds these fucking mental old engines really interesting. I really do hope it's not just me, as if more people took their design influence from these there'd be a whole lot cooler and faster cars out there in 2016... Stav PS- Here's a couple more random pics of this mental (albeit nowhere near the best F1 Turbo engine of its era) motor... |
Hi, I'm Stav...You may or may not have heard of me, but I've spent the last 20 years working full-time in the tuning scene, and the last decade or so writing for various car magazines. Archives
March 2024
Categories
All
|